Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(5)2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38473643

RESUMEN

This paper presents a comprehensive assessment of the suitability of seven commercially available polymers for crafting laboratory models designed for dynamic shaking-table tests using 3D-printing technology. The objective was to determine whether 3D-printed polymer models are effective for dynamic assessments of structures. The polymers underwent experimental investigations to assess their material properties, i.e., the elastic modulus, the mass density, and the limit of linear-elastic behaviour. The following methodology was applied to obtain the correct values of elasticity moduli and yield points of the polymers: (1) the uniaxial tensile test, (2) the compression test, and (3) the three-point loading test. The filament density was determined as the ratio of sample mass to its volume. The results indicate substantial variations in stiffness, density, and elasticity limits among them. For the similarity analysis, an existing reinforced concrete chimney 120 m high was chosen as a prototype. A geometric similarity scale of 1:120 for a laboratory mock-up was adopted, and a numerical model of the mock-up was created. The similarity scales were calculated for mock-ups made of each filament. Based on these scales, numerical calculations of natural frequencies and dynamic performance under a strong earthquake were carried out for models made of different polymers. Assessment of the polymers' suitability for laboratory models revealed positive outcomes. The agreement between field experiments, shaking-table tests, and numerical predictions in terms of natural frequencies was observed. Maximum stresses resulting from the earthquake indicated the satisfactory performance of the model below the linear-elastic limit. Despite differences in material properties, the selected polymers were deemed suitable for 3D-printing models for shaking-table tests. However, the discussion raised some important considerations. The upper frequency limit of the shaking-table imposes restrictions on the number of natural frequencies that can be determined. Numerical assessments of natural frequencies are recommended to prevent underestimation and to assess the feasibility of their determination. Additionally, resonance during natural frequency determination may lead to exceeding the linear-elastic limit, affecting filament properties, and making the similarity criteria invalid. Practically, this research contributes insights for planning shaking-table tests, aiding in selecting the most suitable filament and highlighting crucial considerations to ensure reliable and accurate dynamic assessments.

2.
Materials (Basel) ; 17(2)2024 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-38276451

RESUMEN

This paper aims to identify the optimal reinforced concrete bridge construction for regions at risk of mining-induced seismic shocks. This study compares the performances of two common bridge types made of the same structural tissue, i.e., a reinforced concrete beam bridge and rigid-frame bridge under real mining-induced tremors using uniform and spatially varying ground motion models. This study investigates the dynamic responses of the bridges depending on wave velocity and assesses their susceptibility to mining-triggered tremors based on the contribution of quasi-static and dynamic effects in the global dynamic responses of the bridges. This study revealed significant changes in dynamic response under spatially varying ground excitation for both bridge types. It was observed that rigid-frame bridges show higher susceptibility to quasi-static effects due to their stiffness, whereas beam bridges are more susceptible to dynamic stresses. This study recommends that in regions with mining tremors, the choice between bridge types should consider the possibility of limiting individual components of stress. A solution may involve the reduction in quasi-static components through structural reinforcement or decreasing dynamic components by using vibration absorbers. It was found that beam bridges are more cost-effective and practical in mining-affected areas, especially when founded on weak grounds.

3.
Materials (Basel) ; 16(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36837100

RESUMEN

In this article, the possibility and the pertinence of using 3D printed polymeric materials for models in modal tests on shaking tables were recognized. Four stages of the research have been linked: The material properties investigation, the field experiment on the modal properties of the reinforced concrete chimney (a prototype), the shaking table tests on the modal properties of the 3D printed polymer model of the chimney, scaled according to the similarity criteria, and the numerical calculations of the FE model of the 3D printed mockup. First, the investigation of the properties of 3D printed polymer materials revealed that the direction of lamination had no significant effect on the modulus of elasticity of the material. This is a great benefit, especially when printing models of tall structures, such as chimneys, which for technical reasons could only be printed in a spiral manner with the horizontal direction of lamination. The investigation also proved that the yield strength depended on the direction of the lamination of the specimens. Next, the natural frequencies of the chimney, assessed through the field experiment and the shaking table tests were compared and showed good compatibility. This is a substantial argument demonstrating the pertinence of using 3D printed polymer materials to create models for shaking table tests. Finally, the finite element model of the 3D printed polymer mockup was completed. Modal properties obtained numerically and obtained from the shaking table test also indicated good agreement. The presented study may be supportive in answering the question of whether traditional models (made of the same material as prototypes) used in shaking table tests are still the best solution, or whether innovative 3D printed polymer models can be a better choice, in regard to the assessment of the modal properties and the dynamic performance of structures.

4.
ChemSusChem ; 12(3): 692-705, 2019 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-30328281

RESUMEN

Various temperature-programmed techniques were used as tools in mechanistic studies of selective catalytic reduction (SCR) of NO with ammonia in the presence of Fe-containing BEA zeolites. Moreover, FTIR studies of adsorbed NH3 and NO were conducted to determine the interactions of reactants with the catalyst surface. Iron was introduced into BEA zeolite by three different methods: i) two-step post-synthesis; ii) conventional wet impregnation; iii) ion exchange. The catalytic activity was dependent on the method used for iron introduction. The reactivities of NH3 and NO adsorbed on iron-modified zeolites obtained by impregnation and ion-exchange methods were higher than those measured for the catalyst obtained by a two-step post-synthesis method. The activity of Fe-containing zeolites in SCR was related to the form of deposited iron species, as well as to the nature, strength, and concentration of acid sites. Possible reaction pathways of NO reduction over the FeBEA zeolite catalysts were presented and discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...